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Abstract—Climate change has led to a rise in the frequency
and intensity of natural disasters, which, in turn, affect a wide
swath of human-populated areas. The use of Unmanned Aerial
Vehicles (UAVs) is on the rise in mapping out the disaster
areas in their immediate aftermath. However, processing the
vast amount of data obtained can take several hours to days,
costing crucial time that could be used in saving lives and
infrastructure. In this study, methods were developed to automate
and accelerate the identification of areas that are in critical need
of assistance. A Faster R-CNN object detection model was built
to classify buildings into damaged and undamaged with 90%
precision, and to further sub-classify them by the type of damage
(undamaged, flood, rubble). The number of high quality labeled
images required for training models was increased by 163%
by developing an auto-label generation technique using weak
supervision. Ensemble modeling further improved the recall of
model predictions by 16%, and with higher prediction accuracy,
when analyzing disasters not included in the training set. The
utility of the model was demonstrated by using it to produce
an annotated video of the 2021 tornado damage in Kentucky.
A Mask R-CNN segmentation model had the best performance
overall and identified undamaged roads with 100% precision and
building damage with precision greater than 84% and with recall
greater than 74% for all object types. This study demonstrates
the power of deep learning in the processing of images from
disaster-stricken areas to aid search and rescue efforts and
significantly reduce disaster response times.

Index Terms—Unmanned Aerial Vehicles (UAV), Faster R-
Convolutional Neural Network (fr-CNN), Mask R-CNN, Weak
Supervision, Ensemble Model

I. INTRODUCTION

Over the past fifty years, climate change has led to a greater
than five-fold surge in the number of global natural disasters.
As reported by the World Meteorological Organization and
the UN office of disaster risk reduction, in the period between
1970 and 2019, over 11,000 disasters have been reported all
across the world [1] [2]. The recent Atlantic Hurricane Ian in
September of 2022 is just one such example, which intensified
from a category 1 to category 4 in just a period of 24 hours.
Such natural disasters have resulted in over 2 million deaths
and $3.64 trillion dollars in losses globally as shown in Figure
1.

Due to the resulting damage to critical power and communi-
cation infrastructure, first responders are unable to quickly and
easily identify and respond to individuals in need of assistance,
resulting in larger death tolls and greater financial losses. In the

Fig. 1. Billion dollar [3] weather related disasters in the US, 2022.

immediate aftermath of such disasters, it is important to garner
valuable and time-sensitive information about the nature of the
damage and the areas that need to be prioritized in the search
and rescue efforts. To aid in relief following natural calamities,
images and videos from Unmanned Aerial Vehicles (UAVs)
are increasingly being used to quickly assess the damage and
provide critical information to first responders. However, a
key missing element in current disaster response is the ability
of first responders to rapidly receive information on sections
within the larger disaster zones requiring immediate assistance.
Availability of this crucial piece of information will serve
to significantly improve their response and enable them to
prioritize their relief efforts to populations and areas with the
most urgent needs. Therefore, for the most efficient response
from the search and rescue team, analysis of UAV images and
videos in real-time through automated classification could aid
in the rapid identification of critical areas following a disaster,
so that rescue efforts can be concentrated appropriately.

A. Related Work

Combining the use of drones and artificial intelligence to
aid in disaster relief efforts is still in its infancy. Early work
in this area has focused on deploying drones to efficiently map
an area [4] [5] [6]. Another study describes the use of a path
planning algorithm and the coordination of multiple UAVs to
efficiently map the disaster area [7]. These studies worked on
improving data collection methodologies using UAVs to create
maps of disaster sites for future offline data analysis.



The utilization of deep learning models to classify small
objects in videos by following them through multiple frames
has been previously achieved [8]. For example, CNN-based
models have been used to detect road signs based on images
and videos [9] [10], and distinguish them from background
objects. Previous work has classified buildings based on ter-
restrial images [11]. Additionally, object detection on images
obtained through synthetic aperture radar [13] and hyper
spectral images [12] has enabled models to distinguish the
target from background clutter.

Several earlier reports used manual assessments to analyze
drone data coming in from the disaster sites, for search and
rescue and for damage assessment [14] [15] [16]. However,
this type of analysis is laborious and time consuming, and
results were obtained days or sometimes weeks after the
disaster, particularly due to the large amounts of data and the
vast regions of the disaster zones.

The use of artificial intelligence and UAVs for commercial
use is still nascent. Current state-of-the-art deployed by some
commercial companies like Drone Sense (dronesense.com)
and Cloud Factory (cloudfactory.com) focus on the complex-
ities and logistics of deploying drones to collect data for
analysis.

Over the past three years, studies on the use of AI to
examine drone images and videos have emerged. One of the
key use cases has been to identify damage and perform a safety
assessment, including insurance appraisal [17]. In terms of the
use of AI and drones in search and rescue efforts, a few reports
have been published recently to identify damaged buildings in
drone images [18] [19] [20]. These studies have focused on
a single type of disaster; such as flood damage, or damage
from earthquakes [17]. However, a key limitation of these
studies is the inability to classify multiple forms of damage in
the event of a disaster. For example, a hurricane could cause
multiple types of damage: wind damage creating rubble and
a storm surge causing flood damage. Work that is limited to
studying building damage of one type may miss the multiple
ways in which a building can be damaged, which is crucial for
a first responder in assessing the type of relief efforts. Some
studies require before and after images of the disaster site in
order to accurately classify the damage status to the buildings
[19] [21]. However, in most disaster scenarios, pre-disaster
images may not be readily available for easy processing; and
even if they are, it may be difficult to compare them to the
post-disaster drone images, given the difference in how these
images were acquired. The identification of roads in UAV
images has been recently studied [22] [23]; however, these
roads were not analyzed in the context of a natural disaster in
the presence of other damages to the area.

B. Key Contributions

In this study, an automated labeling method was devel-
oped using weak supervision to automate the laborious task
of manually labeling and creating bounding boxes around
thousands of buildings for training models. A single frame
is used to analyze the image presented by a drone without

the need to rely on before and after images, which may not
always be available. The highlight of this study is that the
trained models are able to classify various types of damage
(rubble, no damage, flood) in a given image, and is also
used to predict damage to buildings from disasters that the
model is not trained on: wars, earthquakes, and fires. Further,
an ensemble model is created and used, which improves
the prediction accuracy and recall. The model is also able
to identify damaged buildings from frames of drone videos,
which for example could be used in real time to identify
the path of a tornado, based on the damage to buildings.
In addition to identifying the buildings and classifying them
in the images, a segmentation model was used to map out
navigable roads. Being able to receive this complete picture
of the path and destination would be extremely valuable for
first responders, as it provides a realistic safety assessment
of the entire disaster area and they can quickly discern the
mode of transportation and route to follow to deliver aid to
the critically affected areas.

II. METHODS

A. Facebook Detectron2 and Google CoLab

The Detectron2 [24] library from Facebook Research was
used, which provides methods to build custom object detection
algorithms. Detectron2 allows users to adapt object detection
and training on customized datasets with their own labels. The
program was compiled through a Google Colab notebook, with
Google GPU machines on the Google Cloud Platform [25].
Python code was written in several Google Colab notebooks
to train and analyze multiple models and document results.

Detectron2 provides a Faster R-CNN [26] model, which en-
ables the detection of bounding boxes around predicted objects
of interest. The faster R-CNN model uses a region proposal
network, which enables the prediction of object bounds and the
objectness scores. All of the models were trained for 10,000
epochs and 70% of the images were used for training, and 30%
were used for prediction and validation. In order to improve
the prediction recall accuracy of the work, ensemble learning
technique [27] was used for some of the experiments. The
frCNN model was found to be inadequate in identifying road
segments and in order to effectively identify navigable roads,
the Mask R-CNN [28] model was implemented through the
Detectron2 library to identify both buildings and roads in a
single frame.

B. Low Altitude Disaster Imagery Dataset

The Low Altitude Disaster Imagery (LADI) dataset [29]
was used as the base data for training the models. This dataset
contained labeled images that were collected by flying a low
altitude UAV over the affected areas shortly after a disaster.
However, for this study, the default bounding box annotations
in the LADI dataset were inadequate and therefore not usable.
A custom labeling and annotation solution was developed to
generate image labels for training the models.



First, any building in a given image (damaged or not)
was manually labeled with bounding boxes using the Labe-
lImg software [30]. However, labeling bounding boxes around
buildings is a fairly difficult and laborious task. A weak
supervision approach was used in this study to supplement
the human labeled dataset, and the details are outlined in the
next section.

C. Automating Image Data Labeling using Weak Supervision

Generating training data for images is very time consuming
and a challenging task. In the past work, has been done
to increase the accuracy of models using other approaches
such as identifying Regions of Interest (ROI) in images [33].
In order to generate labeled data sets that can increase the
inputs to machine learning models, weak supervision was
implemented. This technique was pioneered by the Snorkel
project at Stanford University [34] for models based on text
data. They used models trained on a small set of manually-
generated labels to produce a very large volume of high
quality labeled datasets. Generating auto-labeled data using
weak supervision on images is challenging, since it requires
describing a group of pixels having certain characteristics [35].
This method then uses this generic description for the grouping
and expands them at scale. This procedure for generating
labels is done using static code analysis [36] to reduce the
data required to learn the image structure. An approach based
on this general principle to automate data labeling was adapted
for this image-based dataset was adapted in the following way.

Fig. 2. Flowchart depicting auto-generation of labeled dataset using weak
supervision

The preprocessing steps required for this process is shown
in Figure 2. Each image taken by a drone in the LADI dataset
has dozens of buildings, and manually drawing bounding
boxes around these images is very time consuming. As a first
step, 45 images are collected from the LADI dataset, each
with an average of 20 buildings. These are manually labeled
with bounding boxes around the buildings, resulting in 900
buildings being manually labeled in total. JSON [37] files are
created using the labeling software. These manual labels were
used to train an frCNN model, which was used to predict 1516

labeled buildings with bounding boxes from 88 images as a
boost strapping mechanism to produce more training data.

The LADI images for labeling were split into two sets of
images, one containing buildings without any damage and
another set of images containing only damaged buildings.
The models generated from the above procedure were used to
draw bounding boxes around these buildings and the damage
label of the overall image was assigned as the label for each
individual building.

In summary, the weak supervision labeling technique was
used effectively to auto label and generate 163% more training
data. A combined 2416 buildings was used as input for the
next step for building a frCNN model.

D. Categories of Data

In total, 2416 buildings were labeled for the training data,
most of which were produced through the labeling method
developed by weak supervision. 900 of these were used for
validation and the rest of the data points were used for training.
Table I shows the data split between training and validation.
There was a spread of images from various disaster types:
37% of the buildings were undamaged, 19% were buildings
that became rubble, and 42% were damaged due to floods. A
similar split of buildings was generated for testing the models
that were produced.

TABLE I
BUILDING DAMAGE TYPE DATA FOR TRAINING AND VALIDATION

Num Buildings Undamaged Rubble Flood
Training 1516 36% 21% 41%

Validation 900 37% 18% 43%

In addition, training data was also generated based on
Google Maps to identify road segments. 25 images and 188
road segments were produced from locations in the Midwest.
This was used as raw input for training models to identify
road segments in images.

E. Metrics: Intersection over Union (IoU), Precision, Recall

The Intersection over Union1 metric was used for determin-
ing the accuracy of the model’s prediction [31]. This metric
measures how much two given boxes overlap in relation to
how much area the boxes cover in total. So, if two bounding
boxes each had 100 pixels and 70 pixels from each box is the
intersection, the union would be 130 pixels (since the pixels
at the intersection are not counted twice); so the intersection
over union would be 70/130 pixels, or around 54%.

IoU =
# of pixels in common

# of total pixels
(1)

True Positives are the bounding boxes that the model
predicts correctly as true, and True Negatives are the boxes that
the model predicts as false. Both of these metrics explain how
accurate the model is in predicting and classifying buildings.
The Precision [32] and Recall metric derived from the True



Positive and True Negative were used as the evaluation metric
for the models. Precision defines the ability of the model to
accurately identify an object belonging to a category. The
precision2 is the number of true positives over the total number
of positives predicted.

Precision =
True Positives

Total Positives Predicted
(2)

The recall metric was used to evaluate the number of objects
that met the criteria for detection but not accurately identified
as an object meeting that criteria. The recall3 is the number
of true positives over the number of actual positives.

Recall =
True Positives

Actual Number of Positives
(3)

These two metrics together provide a good evaluation of
the effectiveness of the object detection model. For the ex-
periments, the models are tuned for very high precision, with
modest recall greater than 70%.

III. RESULTS AND DISCUSSION

A. Building Damage Identification using frCNN Model

Fig. 3. Workflow for Building Damage Identification

The images and bounding box annotations with labels were
used as an input for this step. The process for this step is
outlined in Figure 3. A Faster R-CNN model was trained to
identify damaged and undamaged buildings in an image. In
addition to using the trained model to predict bounding boxes
around buildings in images from the LADI dataset, buildings
in disaster images from tornadoes and floods in Kentucky,
Kansas, and Iowa were predicted as well.

Figure 4 shows the images the model produced after train-
ing. The left-hand side shows the raw images, and the right-
hand side shows the model’s predictions on these images.
These are images from the floods in Iowa and tornadoes in
Kentucky. In these images, 0 refers to an undamaged building

and 1 means damaged building1. Images in Figure 4a and
Figure 4c show flood damage to buildings, and Figure 4b and
4d show the model accurately predicting that the buildings
marked by the bounding boxes were affected by flood. Figure
4e shows a few buildings that were damaged by the tornadoes
in Kentucky, and the image in Figure 4f shows the labels
produced by the model. In this particular example, the model
missed marking one of the buildings as damaged.

Fig. 4. Images of 2021 Kentucky floods. A label of 0 means undamaged, and
1 means damaged. The images on the left-hand side show the raw images,
and the right-hand side shows the images after the predictions.

TABLE II
PRECISION AND RECALL VALUES FOR DAMAGED AND UNDAMAGED

BUILDINGS

Avg Recall Avg Precision

Undamaged 89.66 97.50

Damaged 66.12 94.13

Overall the model performed well and predicted the bound-
ing boxes for most undamaged buildings, and had a very high
precision of over 97% and a recall of close to 90% as shown in
Table II. However, for detecting damaged buildings, although
the prediction precision was high, the recall was closer to 66%.
This result is expected since the model is tuned to deliver high
precision results. This is largely attributable to the fact that
damage comes in different forms and increasing the recall to
identify damage requires more image data for training.

1Note: The 0’s and 1’s printed by the software on the images were not
clear so these 0’s and 1’s were manually added to the exact same boxes as
the model to make it easier to see what the model predicted



B. Building Identification and Damage Categorization Using
frCNN Model

Fig. 5. Flowchart for Damage Categorization

In this experiment, a model was trained to go beyond binary
classification of damaged or undamaged, and identify the type
of damage to a building. For example, Hurricane Ian recently
ravaged various parts of Florida, and it caused both flood and
wind damage to buildings. As a result, there is a necessity
to classify the buildings into types of damage to provide
appropriate assistance. The labeled annotations for the images
used in training were modified for this experiment and the pre-
processing steps were implemented using weak supervision to
generate labeled annotations: undamaged, rubble(representing
damage other than flood), and flood. These were used as input
into the next step for model training. The process workflow
described above was used to generate the labels and passed
into training the models as shown in Figure 5.

This data was used to train an frCNN model, which was
able to predict the bounding boxes around the buildings and
classified these buildings with the appropriate damage types.

The resulting images are shown in Figure 6. Figure 6a shows
the image of a neighborhood with no damaged buildings and
Figure 6b shows the bounding boxes and labels predicted by
the model. All of the buildings in the image in Figure 6b
were accurately identified with label 0, or undamaged. Figure
6c and Figure 6d are images from a flood in Kentucky, and
most of these buildings were accurately labeled 2, or flood
damaged. There are two buildings on the bottom right of the
image that were labeled as 1 or rubble, because in some cases
the model was not adequately able to resolve whether the
building was damaged due to floods. Figure 6e shows an image
of destruction caused by a tornado; however, this tornado only
damaged the four buildings on the left of the image, leaving

Fig. 6. Tornadoes and Floods in the Midwest in 2021. A label of 0 means
undamaged, 1 means rubble, and 2 means flood damage.

the other two undamaged. The model was able to identify this
difference, as shown by the labels in Figure 6f, labeling the
buildings with some damage as rubble shown as 1, and the
two undamaged buildings on the right as 0.

TABLE III
PRECISION AND RECALL VALUES FOR UNDAMAGED, RUBBLE, AND

FLOOD DAMAGED BUILDINGS.

Avg Precision Avg Recall

Undamaged 100 89.66

Rubble 97.65 69.17

Flood 88.37 60.32

Table III shows the average precision and recall for the vari-
ous types of damage to buildings being predicted: undamaged,
rubble, and flood. Similar to earlier observations, the average
precision of the model prediction is very high at close to 90%.
The recall for identifying buildings is once again fairly high at
close to 90%. The recall for classifying the buildings damaged
by floods and rubble is 60% and 69% respectively. The recall
numbers are strong for a generalized object detection model
that are tuned to such a high precision. These models are tuned
to deliver very high precision results even at the expense of
recall so that first responders would have an accurate estimate
of what to expect in a disaster scene.

C. Classifying Images from Untrained Disasters

The images and modified annotations from the previous
experiment were also used as input to train the models for
this experiment. In this experiment, the model was evaluated



on images from three disasters previously not trained on:
earthquakes, war, and fire.

When the model was applied on images from these disasters,
the precision continued to be around 90% but the recall
dropped down to 52% from 65%. One of the key reasons for
this drop is the fact that although these images represented
damaged buildings, the appearance of the buildings post-
disaster is different from the images with which the models
were trained on, especially for images based on disasters that
the model was never trained on. In order to overcome this
drop in recall, ensemble modeling was employed to boost the
prediction accuracy of the ML model and this is detailed in
the next sub-section.

D. Improving Model Recall using Ensemble Model

Fig. 7. Workflow for Ensemble Model

Ensemble learning [27] involves combining the many indi-
vidually trained models, resulting in higher performance when
compared to each of the individual models. The logic behind
the ensemble is that neural networks start out with a set
of random weights, and depending on the starting weights,
it could converge to different values, which would result
in different predictions for the same image. By combining
multiple models with a different set of starting weights and
varying predictions, the maximum prediction accuracy can be
achieved.

Figure 7 shows the flowchart for this process. Four different
models were trained on the input. With the addition of each
of these models to the ensemble, the recall of the combined
model improved, as shown in Table IV. Figure 8 gives an
intuition behind how the ensemble model works. Visually, the
output of the ensemble model predicted more buildings and
their correct damage status when compared to the individual
models. The ensemble model as depicted in Figure 8 was able

TABLE IV
RECALL OF ENSEMBLE MODEL. THIS TABLE SHOWS THE RECALL OF THE

ENSEMBLE MODEL BASED ON THE NUMBER OF MODELS THAT ARE
AGGREGATED. AS THE NUMBER OF MODELS INCREASES, THE RECALL

IMPROVES.

# of Models Recall %

1 52.5

2 56.1

3 58.9

4 60.9

to predict more buildings in images labeled as being damaged,
improving the recall.

Fig. 8. Results of Ensemble Model. Images a and b each have one box
labeled, but when combined using the ensemble model, there are two boxes
labeled in the image to the right which produces a super set of these two
images.

The images that this ensemble predicted had many more
buildings classified accurately than the models individually.
The results are shown in Figure 9.

E. Frame-by-Frame Analysis on Drone Videos

In the event of a disaster, drones are capable of providing an
aerial vantage point of the disaster areas for the first respon-
ders. An annotated video detailing the areas of damage would
be extremely valuable for first responders to be able to direct
the accurate aid to the appropriate location. A drone video
from the town of Bowling Green, Kentucky [38] was obtained,
shortly after the tornado in December of 2021. Additionally, a
drone was flown around a neighborhood, in order to generate
a video of undamaged homes. Cv2 [39] was used to generate
image frames from both of these videos, and the model
was used to predict on these images, as outlined in Figure
10. After the bounding boxes and labels were predicted, the
frames of each video were stitched back together, producing an
annotated video. This video that was generated, demonstrating
the viability of this method, is available for viewing and the
details are in Shivakumar [40].

A few frames from the video are shown in Figure 11,
and the path that the tornado followed through the town is
clearly visible. The buildings toward the center of the frame
are labeled as rubble (red box), but the ones on the outside are
normal (yellow box). This type of annotated video depicting
the damage would be very useful to first responders in the
immediate aftermath of a disaster.



Fig. 9. Ensembling on Previously Unseen Disaster Types. Images from
disasters such as earthquakes, fires, and even war, not used in training, were
analyzed using the ensemble model. The images on the left are original, and
the ones on the right are the predictions by the ensemble model.

Fig. 10. Analysis of Drone Video. The frames from the video were spliced,
and each frame was analyzed by the model. Following the predictions, the
frames were stitched back together, creating the annotated video.

Fig. 11. Model predictions on select frames of the video. These images are
from the tornado disasters in Kentucky. In both of these images, the path that
the tornado took through this town is clear, because the buildings in the center
are labeled as damaged, whereas the ones on the outside are undamaged.

F. Building Classification and Roads Segmentation using
Mask R-CNN

Identifying roads that are navigable is an important com-
ponent of enabling faster disaster relief. The frCNN modeling
was first extended to be able to train on and identify roads
that are undamaged. The trained model draws bounding boxes
around identified objects. While bounding boxes work well
to identify buildings, this is difficult to use for roads since
their shapes are not well defined. In order to adequately model
and identify roads a switch to using the segmentation method
[41] was made, that uses the Mask R-CNN [28] model. The
segmentation works differently, predicting whether the given
pixel is a part of a road or not for each pixel in the image.

In order to label objects for segmentation modeling, the
label imaging software [30] was used, in which four points
were used to encompass the road, instead of a box. These
labeled images were used as input into a machine learning
model. The initial training of the model was only for the
purpose of identifying road segments.

Fig. 12. Faster R-CNN vs Mask R-CNN for road predictions. The figure
on the left shows the regular Faster R-CNN predictions for roads. Since the
predictions are shown as rectangles, it is difficult to accurately outline the
road. The image on the right shows the Mask R-CNN predictions. This model
predicts whether each pixel in the image is a road or not, and therefore,
outlines the road clearly.

Figure 12 shows a comparison of the frCNN model predic-
tion for roads (Figure 12a) and the segmentation model (Figure
12b). As seen in Figure 12a, the bounding box encompasses
a large portion of the image, and does not clearly outline the
road. However, in Figure 12b, the exact shape of the road is
outlined with segmentation. Just to note, this particular model
was purely detecting roads in an image, without buildings (a
combined road and building model was trained later).

Figure 13 details the process used to evaluate the models
with roads. The new label annotations for the roads using



Fig. 13. Workflow for Mask R-CNN segmentation model for road predictions

segmentation along with the previous labels for building
annotations were used as input to train a combined model
to identify both roads and buildings. Figure 14 shows the
results of the segmentation performed on roads and buildings
combined. This type of analysis depicts the clear outline of
the road as discussed earlier, along with outlines of damaged
or undamaged buildings.

Fig. 14. Simultaneous Road and Building predictions. The image shows the
segmentation of the road along with the classification of the building damage.
Some of the roads in the image are not labeled, which is due to the fact that
they were too damaged for the model to identify it as a road at all.

Table V shows the precision and recall of the model on
the validation data set. The precision was greater than 84%
for this model in all the damage categories, with recall above
74%, which was significantly better than the frCNN model. In
addition, the precision was 100% for detecting roads and the
recall was greater than 77%. The results of this experiment
clearly demonstrate that the Mask R-CNN is far superior to
the frCNN model in being able to identify buildings and roads
in the same image.

TABLE V
PRECISION AND RECALL SCORES FOR BUILDINGS, ROADS, DAMAGED,

AND FLOODED BUILDINGS AND VALIDATION SET.

Avg Precision Avg Recall
Building 100 77.55

Road 100 74.29

Damage 96.97 94.12

Flood 84.63 77.78

IV. CONCLUSIONS AND FUTURE WORK

Through this research, accurate prediction of building dam-
age from images of recent disasters was achieved, along with
an extension of this prediction to previously unseen disasters,
providing proof on the extensibility of this model. The model
in this study was effective in classifying different types of
damage in a given frame, information which is crucial for
first responders as multiple damage types can exist in a single
disaster zone, and the rescue efforts will be dependent on the
type of damage. The demonstration of the effectiveness of
this type of analysis in video footage and the generation of
a frame-by frame analyzed video provides a vision of how
the data will be made available to first responders. Since the
analysis and predictions will be performed in real-time, a very
rapid response time is feasible.

In general, the most tedious and time-consuming aspect
of building ML models with image data is the generation
of labels. The power of this work stems from the ability to
scale the manual labeling of images through automation by
using weak supervision. The Faster R-CNN model developed
in this study was able to accurately, and with high precision
and recall, classify multiple types of damage to buildings.
The superiority of the Mask R-CNN segmentation model
was evident from its improved prediction accuracy over the
Faster-R-CNN model and the identification of navigable road
segments in disaster images with high precision. Using an en-
semble modeling approach, the study extended the prediction
of damage to images from disasters that the model was not
trained on. The development and successful use of techniques
such as ensemble modeling and weak supervision demonstrate
that this analysis can be extended to other image processing
applications as well.

In future work, the images produced by the drones will be
mapped to GPS coordinates to precisely provide navigation in-
structions for first responders to quickly reach their destination.
The drone itself has data about its location, and this, along with
the angle of the camera, can be used to calculate the GPS coor-
dinates. Further, the panoramic stitching of object and damage
predictions from multiple images from one or more UAVs can
provide a more realistic and multidimensional perspective of
the damage assessment to buildings and infrastructure.

Certain types of disasters may cause damage to infrastruc-
ture, and if a drone is sending videos and photos through the
cell tower, that may not be possible due to significant damage.



If this connectivity is limited due to the damage, the first
responders will experience difficulty in receiving the images
from the drones in real-time. Therefore, a future extension of
this project which is in the planning stage is to have much
of the intelligence live in the drone itself and for the drone
to only send the analyzed results, which will require limited
connectivity.

Another limitation of the model is the low recall for previ-
ously unseen types of damage that the model has not trained
with. While ensembling is a powerful technique, training
the model with more labeled data can further improve the
performance significantly. In addition, the creation of a large
database of disaster site images in the future from multiple
sources that will incorporate satellite imagery and cell phone
data will extend the effectiveness of this study.
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